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Adaptive Hydraulics (ADH) Control Volume 

and Mass Conservation 
 

by Gaurav Savant, Charlie Berger and Jennifer N. Tate 
 

 
PURPOSE:  This paper demonstrates that the conservative finite element methods (FEM) are 

finite volume methods (FVM) with the edge fluxes derived from the interior of the elements. The 

element is the control volume. A set of algebraic equations is used to force the edge fluxes 

derived from surrounding elements to be unique. 

 
PREFACE: Berger and Howington (2002) demonstrated that the ADH model conserves mass 

globally and locally, as well as the fact that a control volume exists. This paper further simplifies 

the mathematics of the FEM implemented in ADH presented to just one dimension (1-D) for 

ease of understanding. This paper also extends the testing of ADH to large physical scales and 

long time scales. 

 

INTRODUCTION: In this technical note we will show that the FEM in conservative form 1) has 

a control volume 2) is locally conservative over the control volume, and 3) the set of equations 

solved in Adaptive Hydraulics (ADH) force the uniqueness of fluxes on an edge. We will 

demonstrate this using a Petrov-Galerkin finite element scheme and a One-Dimensional (1D) 

conservation equation. We will utilize the US Army Corps of Engineers unstructured finite 

element code Adaptive Hydraulics (ADH) as the numerical code to illustrate the above. A 

description of ADH is beyond the scope of this paper and the interested reader is referred to the 

ADH website at http://www.adh.usace.army.mil, or the works by Tate et.al (2006) and Savant 

et.al (2010). 

 

One-Dimensional Equation: 
 

Consider the conservative form convection diffusion equation in 1D  

0
c uc c

K
t x x x

    
   

    
                                                                                                             (1) 

 

where c = constituent, t = time, x = distance, u = velocity, and K = elemental constant. 

 

We wish to derive the fluxes at the ends of an element. We will assume a form of u and c for 

which the flux at any point is 
c

F uc K
x


 


 within the interior of the element, and u and c are 

linear within the element . On an element c and u are represented as shown in figure 1. The 

distribution of c is linear (figure 1). Note that the definition approaches the end points but does 

not include them (represented by dashed lines in figure 2).  

http://www.adh.usace.army.mil/
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Figure 1: Linear Definition of c 

 

Therefore, the evaluation of uhch (where the subscript h means the numerical approximation of 

the variable) might look like the representation in figure 2.  

 

 
Figure 2: Representation of Variables  

 

 

We want to derive the flux on each end of the element. If we define our weight function “W” to 

be a constant value of “1” on the element and zero everywhere else, we can write 

0h h h h
e

c u c c
W K dx

t x x x


   
   

    
                                                                                             (2) 

 

where   is the entire domain, the subscript h indicates approximation within element e, and We is 

the step function on element e as represented in figure 3. We note that We is zero (0) outside of 
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the element, therefore the contribution outside the element is also 0. We will hereafter only 

perform this integration on 
e

 i.e. on the element “e”. 

 

 
Figure 3: Step Function We 

 

Integrating equation 2 by parts we obtain 

 

 
1 0-F +F

e

h e h
e h h

c W c
W u c K dx

t x x


     
    

    
                                                                               (3) 

Where F0 and F1 are fluxes at node 0 and 1 respectively. Note that 
e0 and W 1eW

x


 


on 

element e. Therefore we can write 

 1 0-F

e

hc
dx F

x



 


                                                                                                                        (4) 

 

Equation 4 is a statement of local mass conservation over element e.  Stabilization such as the 

one utilized in the Streamline-Upwind Petrov-Galerkin (SUPG) (Hughes and Brooks, 1982) has 

no net impact on local mass conservation due to the fact that 0eW

x





 over the entire element. 

The stabilization involves elemental constants times the gradients of the test function integrated 

against the discrete equations. Under these conditions local mass conservation is not changed, 

although the fluxes are modified. 

 

Notice that equation 4 provides the sum of fluxes but we desire the individual flux at each end. 

We can get this decomposing our weight function into two weight functions as represented in 

figure 4. 
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Figure 4: Decomposition of We  

 

When we apply these one at a time we get the individual end fluxes. 

 

 

0
0 0

1
1 1

F

and

-F

e

e

h h
h h

h h
h h

c W c
W u c K dx

t x x

c cW
W u c K dx

t x x





     
    

    

     
    

    





                                                                                    (5) 

 

0F  and 1F  are fluxes as defined on element “e”, hereafter we will refer to them as e

0F and e

1F , 

where “e” signifies as calculated by element “e”. 

 

We are assured of being locally conservative on element “e”. However, we are not guaranteed 

that the elements surrounding element “e” will calculate the same flux at the same node. If we 

consider an element “f” adjacent to “e” (figure 5) we get the following definition of f

1F
 

  f1
1 1F

f

h h
h h

c cW
W u c K dx

t x x


     
    

    
                                                                                    (6) 

 

 

 
Figure 5: Element f with the decomposed W1. 
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If we add the two definitions of 1F  from elements “e” and “f” we get 

f e1
1 1 1F -F

e f

h h
h h

c cW
W u c K dx

t x x
 

     
    

    
                                                                             (7) 

We require e

1F  and f

1F to be identical. Therefore we solve for ch such that this holds true as 

follows 

 

1
1 0

e f

h h
h h

c cW
W u c K dx

t x x
 

     
    

    
                                                                                    (8) 

 

Attention is now drawn to some salient points indicated by equation 8: 

1) We have unique fluxes at ends of the elements. If we compute the temporal and 

convective mass rate of change (to include diffusive terms if utilized) around an element, 

they will balance. This is a direct result of the weight function “W” around an element 

being a constant value of “1”, 

2) We are locally conservative; that is, we have a control volume representing each 

individual element, and 

3) While there are some additional considerations for application to higher dimension, the 

approach and result are the same.  The mathematical equations hold true for two-

dimensional (2D) and three-dimensional (3D) cases as well, with or without stabilization. 

 

Application: We now apply the 2D ADH code to a practical large scale test case involving 

Lake Ponchartrain (Louisiana) without wetting-drying to demonstrate local as well as global 

mass conservation. The domain is enclosed to make the accounting obvious. We will do this in 

two ways. We will demonstrate local mass conservation on two typical elements over a few days 

during which a single wind event takes place. The second test is a year-long simulation in which 

the winds are applied cyclically every day. Water and solute mass will be shown to remain 

conserved over the entire domain during this extended period. Figure 6 illustrates the finite 

element ADH mesh and the direction of the wind forcing for the first test. 

 

The ADH simulation was forced by applying a uniform wind over the domain for one (1) day 

and thereafter letting the domain slosh. The domain bottom elevation was specified as zero (0) 

meters and had an initial water depth of three (3) meters everywhere. An initial constituent 

concentration of one (1) mg/l was specified everywhere in the domain. 

 

The simulation was run for a period of five (5) days at time steps of six hundred (600) seconds. 

The global mass was computed every day and the local mass conservation was checked at every 

successive time step. Table 1 lists model behavior in terms of global mass conservation for the 

first test.  
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Figure 6: ADH mesh for Lake Pontchartrain showing dimensions and wind direction 

 

 

Local mass conservation is guaranteed, as described by equation 4. To illustrate this in the test 

problem the authors picked two (2) random elements inside of the domain. These were elements 

eight hundred eighty-one (881) and seventy-seven (77). Also as stated earlier, within the control 

volume (i.e. the element) the temporal and convective fluxes balance. This is illustrated in 

figures 7 and 8. 

 

The second test consisted of a year long run forced by winds alternating every day from the 

positive “+” to the negative “-“ x- direction. Table 2 lists model behavior in terms of global 

solute and fluid mass conservation. Figure 9 shows the local solute mass conservation for 

element 77, element 881 shows similar behavior. For the sake of clarity we only show the first 

100 days of simulation. 
 

 

Time, Days Constituent Mass 

0.00 5432580.570000 

1.00 5432580.570000 

2.00 5432580.570000 

3.00 5432580.570000 

4.00 5432580.570000 

5.00 5432580.570000 

   Table 1: Global Constituent Mass Conservation for test 1 

 

 

Element 

77 

Element 881 
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Figure 7: Local Mass Conservation for Element 881.     

 

 
Figure 8: Local Mass Conservation for Element 77. 
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Time, Days Constituent Mass Fluid Mass Constituent Mass Error Fluid Mass Error 

0 5432580.570000 5432580570.000000 0.000000 0 

5 5432580.570000 5432580569.999990 0.000000 1.75547E-13 

10 5432580.570000 5432580569.999990 0.000000 1.75547E-13 

15 5432580.570000 5432580569.999990 0.000000 1.75547E-13 

20 5432580.570000 5432580570.000010 0.000000 -1.75547E-13 

50 5432580.570000 5432580570.000000 0.000000 0 

100 5432580.570000 5432580570.000010 0.000000 -1.75547E-13 

150 5432580.570000 5432580570.000000 0.000000 0 

200 5432580.570000 5432580569.999990 0.000000 1.75547E-13 

250 5432580.570000 5432580569.999990 0.000000 1.75547E-13 

300 5432580.570000 5432580570.000000 0.000000 0 

350 5432580.570000 5432580570.000030 0.000000 -5.44196E-13 

365 5432580.570000 5432580570.000020 0.000000 -3.68649E-13 

Table 2: Global Constituent and Fluid Mass Conservation for 365 day test 

 

 

 
Figure 9: Long Term Local Solute Mass Conservation for element 77. 
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SUMMARY: This technical note provides mathematical proof that the Finite Element Method 

(FEM) are Finite Volume Methods (FVM) with consistent edge fluxes derived from the interior 

of the elements. 

 

This technical note also demonstrates that the Adaptive Hydraulics model is locally and globally 

mass conservative for fluid and solute transport, this is demonstrated on a large scale test 

problem over long time scales. ADH is shown to conserve fluid and solute mass to machive 

precision. 

 

ADDITIONAL INFORMATION:  For additional information, contact Dr. G. Savant, or 

Dr. R.C. Berger at Gaurav.Savant@usace.army.mil or Charlie.R.Berger@usace.army.mil 

respectively.  This CHETN should be cited as follows: 

Savant, G., Berger, R.C. and Tate J.N. (2012). Adaptive Hydraulics (ADH) 

Control Volume and Mass Conservation.  Coastal and Hydraulics Engineering 

Technical Note, ERDC/CHL CHETN-XI-16.  Vicksburg, MS: U.S. Army Engineer 

Research and Development Center.  An electronic copy of this CHETN is 

available from http://chl.erdc.usace.army.mil/chetn. 
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