Compiling and Editing ADH in the Windows Environment

Using MS Visual Studio 2005

Migrating ADH to Windows

Moving the Source Code to Windows

· On the UNIX side, tar the file up and remember its location.

· On your PC, FTP to the location of the source code, and “get” the .tar file.

· Extract the .tar on your PC.

· Through “My Computer”, locate the source directory containing the extracted files.

· Remove the “lib” and “bin” directories. These will be regenerated when needed during UNIX compilation.

· In the main directory, remove all object files (*.o) and UNIX executables (adh and pre_adh).

Importing the Files into Visual Studio

· In Visual Studio, from the File menu choose “New …” -> “Project from Existing Code”. This will bring up a wizard to guide you through the process of importing the source code.

· When prompted “What type of project would you like to create?” select “Visual C++” and click “Next” to proceed.

· This window is labeled “Specify Project Location and Source Files”. Beneath “Project file location:” click “Browse” to locate the untar-ed source folder you created above. Note that this is the top-level directory of your source code, not the individual folders (fe, tools, node, etc.).

· Beneath “Project name:” enter a name for your project. This could be the same name as the top-level directory of your source code. When we are done, this will serve as the name of your Visual Studio Solution. Click “Next” (NOT “Finish”) to proceed.

· This window is labeled “Specify Project Settings”. Beneath “How do you want to build the project?” choose “Use Visual Studio”. Beneath this radio button, there is a drop down menu under “Project type:”. Choose “Console Application Project” and click “Finish” to create your Solution.

· This will bring you to the main development environment for Visual Studio. The panel on the left is called the “Solution Explorer”. Solutions may contain multiple projects, one for each executable that is being produced. This means, in the case of adh, that we need two projects within our solution – one for adh and pre_adh, respectively.

Creating “adh” and “pre_adh” Projects

· In the Solution Explorer, you will see your newly-created solution and a project below with the same name. Select this project and go to “File” -> “Save proj As …” where proj is the name of your project. If not already there, browse to the location of your adh source code. Save the project as “adh”.
· Repeat the “File” -> “Save As …” operation and save a second project as “pre_adh”.
· Now you should be back at the Solution Explorer. Right-click on the project and choose “Remove”. Be sure you are choosing the project, which will be listed in the tree beneath the solution title. Currently, our solution and project have the same name, but we are about to change this. Confirm your deletion by clicking “OK” when prompted. Note that we have removed our original project from the solution.
· Right-click on the solution title, which should be the only item currently listed in the Solution Explorer. Select “Add” -> “Existing Project”. Browse to your adh source code directory and select the adh project file which you saved above.
· Back in the Solution Explorer, change the name of the project (not the solution) to “adh”. This way, the executable created by the project will be “adh.exe” and can be run with the command “adh”.
· Similarly, add the project “pre_adh” to the solution, and rename it “pre_adh”.
Configuring the Solution

· In the Solution Explorer, right-click on the solution title and choose “Properties”. This will bring up a window with a tree on the left-hand side. Select “Startup Project” from this tree, and then choose the radio button “Multiple Startup Projects” in right-hand pane. Select “Configuration Properties” from the tree then click the “Configuration Manager…” button in the upper right hand corner of the dialog box. Under “Active solution configuration”, click the drop-down box and change the option from “Debug” to “Release”. Click Close then OK to proceed.
· For each of the two projects (“adh” and “pre_adh”), do the following:
· Right-click on the project title and choose “Properties”. In the tree to the left, below “Configuration Properties”, expand the node “C/C++” and select “General”. In the right-hand pane, beside “Additional Include Directories”, type “./include;./boat/include”. This tells the compiler where to look for header files.
· Now select “Advanced” in the left-hand tree (still within the “C/C++” node grouping). In the right-hand pane, select the row labeled “Compile As”, which will enable a drop-down menu. From this menu, select “Compile As C Code (/TC)” and click OK.
· The solution is now configured to compile correctly, however, there are some elements in our adh source code that are not compiled. We do not want to delete these files, because we will need them again on the UNIX side, but we do not want Visual Studio to attempt to compile them, either. We need to exclude these elements from each project before we can proceed to compilation.
Excluding Non-compiled Source Files

· Perform the following for each project (‘adh” and “pre_adh”):

· Select the project title, and then from the “Project” menu, select “Show All Files”. This operation may take a moment to complete.

· View the directory structure of the project by double-clicking the project title. This directory structure should be identical to your adh source code.

· From here, you can specify all files and folders that should not be compiled. These include, but are not limited to, because of differences between individual versions of code, the following:

· The machines directory

· The test directory

· The VML Files directory (at adh/boat/VML Files)

· The header files “parmetis.h” and “parmetis_defs.h” in the include directory

· The include directory’s sub-directories METIS, SuperLU_DIST, and UMFPACK
· Any other files in your independent version of the code that should not be compiled

· To exclude a file from the project’s compilation, right click on the file or folder and select “Exclude from Project”. Do not click “Delete” as this will remove the file(s) completely.

· Within the project “adh”, exclude the file pre_adh.c, which is in the main directory (at adh/main/pre_adh.c). This tells the compiler that the project “adh” is to use the “main” subroutine defined in adh.c when compiling, and not the “main” routine in pre_adh.c.

· Similarly, within the project “pre_adh”, exclude the file adh.c, which is also in the main directory (at adh/main/adh.c).
· Optionally, but painstakingly, one could remove from project “pre_adh” all files not used by pre_adh.c. This would be the equivalent of specifying the Make_pre lists when compiling pre_adh.c rather than the Make_all lists of files. However, the Make_all lists work fine, but could cause delays in compile time when compiling pre_adh.exe alone rather than both executables at the same time.
Building/Compiling the Solution

· To build the entire solution, hit F7 or select “Build Solution” from the “Build” Menu. This will compile both executables.
· During compilation, you will see compiler output at the bottom of the Visual Studio window. The compiler will report a number of warnings related to usage of deprecated functions. However, these deprecations are non-standard, and for the sake of compatibility, the Microsoft-declared deprecated functions remain in the code. They are still supported, with no known issues or side-effects, by the Visual Studio compiler. The WIN32 compile flag could be used as a pre-processor directive so that the updated versions of the deprecated functions could be called when compiling in Windows. However, it is likely that other versions of Windows compilers may not support the updated versions requested by the Visual Studio compiler.
· The executable files adh.exe and pre_adh.exe are stored in the Release directory, which Visual Studio creates in the project directory.
